Optimal Elbow Angle for Extracting sEMG Signals During Fatiguing Dynamic Contraction
نویسندگان
چکیده
Surface electromyographic (sEMG) activity of the biceps muscle was recorded from 13 subjects. Data was recorded while subjects performed dynamic contraction until fatigue and the signals were segmented into two parts (Non-Fatigue and Fatigue). An evolutionary algorithm was used to determine the elbow angles that best separate (using Davies-Bouldin Index, DBI) both Non-Fatigue and Fatigue segments of the sEMG signal. Establishing the optimal elbow angle for feature extraction used in the evolutionary process was based on 70% of the conducted sEMG trials. After completing 26 independent evolution runs, the best run containing the optimal elbow angles for separation (Non-Fatigue and Fatigue) was selected and then tested on the remaining 30% of the data to measure the classification performance. Testing the performance of the optimal angle was undertaken on nine features extracted from each of the two classes (Non-Fatigue and Fatigue) to quantify the performance. Results showed that the optimal elbow angles can be used for fatigue classification, showing 87.90% highest correct classification for one of the features and on average of all eight features (including worst performing features) giving 78.45%.
منابع مشابه
Activation among the elbow flexor muscles differs when maintaining arm position during a fatiguing contraction.
Twenty-four men (n = 11) and women (n = 13) supported an inertial load equivalent to 20% of the maximum voluntary contraction force with the elbow flexor muscles for as long as possible while maintaining a constant elbow angle at 90 degrees. Endurance time did not differ on the three occasions that the task was performed (320 +/- 149 s; P > 0.05), and there was no difference between women (360 ...
متن کاملMuscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks
This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs) within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electr...
متن کاملElectromyographic measures of muscle activation and changes in muscle architecture of human elbow flexors during fatiguing contractions.
The study compared changes in intramuscular and surface recordings of EMG amplitude with ultrasound measures of muscle architecture of the elbow flexors during a submaximal isometric contraction. Ten subjects performed a fatiguing contraction to task failure at 20% of maximal voluntary contraction force. EMG activity was recorded in biceps brachii, brachialis, and brachioradialis muscles using ...
متن کاملA Probabilistic Approach to Assess Activity during Dynamic Eccentric and Concentric Contractions
Purpose of this work is to present a probabilistic approach to assess the muscular activity during eccentric and concentric contractions in specific joint angle positions out of series of movements. The method is utilized to exemplarily retrieve an individualized relationship of surface electromyogram (sEMG) and elbow joint angle in elbow flexion during dynamic movements to finally show the dif...
متن کاملDecomposition of surface EMG signals from cyclic dynamic contractions.
Over the past 3 decades, various algorithms used to decompose the electromyographic (EMG) signal into its constituent motor unit action potentials (MUAPs) have been reported. All are limited to decomposing EMG signals from isometric contraction. In this report, we describe a successful approach to decomposing the surface EMG (sEMG) signal collected from cyclic (repeated concentric and eccentric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers
دوره 4 شماره
صفحات -
تاریخ انتشار 2015